403 research outputs found

    Feed-Forward Propagation of Temporal and Rate Information between Cortical Populations during Coherent Activation in Engineered In Vitro Networks.

    Get PDF
    Transient propagation of information across neuronal assembles is thought to underlie many cognitive processes. However, the nature of the neural code that is embedded within these transmissions remains uncertain. Much of our understanding of how information is transmitted among these assemblies has been derived from computational models. While these models have been instrumental in understanding these processes they often make simplifying assumptions about the biophysical properties of neurons that may influence the nature and properties expressed. To address this issue we created an in vitro analog of a feed-forward network composed of two small populations (also referred to as assemblies or layers) of living dissociated rat cortical neurons. The populations were separated by, and communicated through, a microelectromechanical systems (MEMS) device containing a strip of microscale tunnels. Delayed culturing of one population in the first layer followed by the second a few days later induced the unidirectional growth of axons through the microtunnels resulting in a primarily feed-forward communication between these two small neural populations. In this study we systematically manipulated the number of tunnels that connected each layer and hence, the number of axons providing communication between those populations. We then assess the effect of reducing the number of tunnels has upon the properties of between-layer communication capacity and fidelity of neural transmission among spike trains transmitted across and within layers. We show evidence based on Victor-Purpura's and van Rossum's spike train similarity metrics supporting the presence of both rate and temporal information embedded within these transmissions whose fidelity increased during communication both between and within layers when the number of tunnels are increased. We also provide evidence reinforcing the role of synchronized activity upon transmission fidelity during the spontaneous synchronized network burst events that propagated between layers and highlight the potential applications of these MEMs devices as a tool for further investigation of structure and functional dynamics among neural populations

    Repeating Spatial-Temporal Motifs of CA3 Activity Dependent on Engineered Inputs from Dentate Gyrus Neurons in Live Hippocampal Networks.

    Get PDF
    Anatomical and behavioral studies, and in vivo and slice electrophysiology of the hippocampus suggest specific functions of the dentate gyrus (DG) and the CA3 subregions, but the underlying activity dynamics and repeatability of information processing remains poorly understood. To approach this problem, we engineered separate living networks of the DG and CA3 neurons that develop connections through 51 tunnels for axonal communication. Growing these networks on top of an electrode array enabled us to determine whether the subregion dynamics were separable and repeatable. We found spontaneous development of polarized propagation of 80% of the activity in the native direction from DG to CA3 and different spike and burst dynamics for these subregions. Spatial-temporal differences emerged when the relationships of target CA3 activity were categorized with to the number and timing of inputs from the apposing network. Compared to times of CA3 activity when there was no recorded tunnel input, DG input led to CA3 activity bursts that were 7× more frequent, increased in amplitude and extended in temporal envelope. Logistic regression indicated that a high number of tunnel inputs predict CA3 activity with 90% sensitivity and 70% specificity. Compared to no tunnel input, patterns of >80% tunnel inputs from DG specified different patterns of first-to-fire neurons in the CA3 target well. Clustering dendrograms revealed repeating motifs of three or more patterns at up to 17 sites in CA3 that were importantly associated with specific spatial-temporal patterns of tunnel activity. The number of these motifs recorded in 3 min was significantly higher than shuffled spike activity and not seen above chance in control networks in which CA3 was apposed to CA3 or DG to DG. Together, these results demonstrate spontaneous input-dependent repeatable coding of distributed activity in CA3 networks driven by engineered inputs from DG networks. These functional configurations at measured times of activation (motifs) emerge from anatomically accurate feed-forward connections from DG through tunnels to CA3

    Sparse and Specific Coding during Information Transmission between Co-cultured Dentate Gyrus and CA3 Hippocampal Networks

    Get PDF
    To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 μm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the trials, significantly higher than the reverse, i.e., how well-recording in DG could predict the stimulation site in CA3. In conclusion, our co-cultured model for the in vivo DG-CA3 hippocampal network showed sparse and specific responses in CA3, selectively evoked by each stimulation site in DG

    Effects of Pramipexole on Impulsive Choice in Male Wistar Rats

    Get PDF
    This article may not exactly replicate the final version published in the APA journal. It is not the copy of record.Clinical reports, primarily with Parkinson’s patients, note an association between the prescribed use of pramipexole (and other direct-acting dopamine agonist medications) and impulse control disorders, particularly pathological gambling. Two experiments examined the effects of acute pramipexole on rats’ impulsive choices where impulsivity was defined as selecting a smaller-sooner over a larger-later food reward. In Experiment 1, pramipexole (0.1 to 0.3 mg/kg) significantly increased impulsive choices in a condition in which few impulsive choices were made during a stable baseline. In a control condition, in which impulsive choices predominated during baseline, pramipexole did not significantly change the same rats’ choices. Experiment 2 explored a wider range of doses (0.01 to 0.3 mg/kg) using a choice procedure in which delays to the larger-later reinforcer delivery increased across trial blocks within each session. At the doses used in Experiment 1, pramipexole shifted choice toward indifference regardless of the operative delay. At lower doses of pramipexole (0.01 & 0.03 mg/kg), a trend toward more impulsive choice was observed at the 0.03 mg/kg dose. The difference in outcomes across experiments may be due to the more complex discriminations required in Experiment 2; i.e., multiple discriminations between changing delays within each session

    Unlensing HST Observations of the Einstein Ring 1RXS J1131-1231: A Bayesian Analysis

    Full text link
    We present a source and lens reconstruction for the optical Einstein ring gravitational lens system RXS J1131-1231. We resolve detail in the source, which is the host galaxy of a z=0.658z=0.658 quasar, down to a resolution of 0.045 arc seconds (this is the size of the smallest conclusively resolved structures, rather than the pixel scale), using a Bayesian technique with a realistic model for the prior information. The source reconstruction reveals a substantial amount of complex structure in the host galaxy, which is ∼\sim 8 kpc in extent and contains several bright compact substructures, with the quasar source residing in one of these bright substructures. Additionally, we recover the mass distribution of the lensing galaxy, assuming a simply-parameterised model, using information from both the quasar images and the extended images. This allows a direct comparison of the amount of information about the lens that is provided by the quasar images in comparison to the extended images. In this system, we find that the extended images provide significantly more information about the lens than the quasar images alone, especially if we do not include prior constraints on the central position of the lens.Comment: MNRAS accepte
    • …
    corecore